Microcavity Semiconductor Lasers

eBook - Principles, Design, and Applications

133,99 €
(inkl. MwSt.)


E-Book Download
Bibliografische Daten
ISBN/EAN: 9783527820184
Sprache: Englisch
Umfang: 336 S., 13.20 MB
Auflage: 1. Auflage 2021
Format: PDF
DRM: Adobe DRM


<b>Microcavity Semiconductor Lasers</b><p><b>Explore this thorough overview of integrable microcavity semiconductor lasers and their applications from two leading voices in the field</b><p>Attracting a great deal of attention over the last decades for their promising applications in photonic integration and optical interconnects, microcavity semiconductor lasers continue to develop via advances in fundamental physics, theoretical analysis, and numerical simulations. In a new work that will be of interest to researchers and practitioners alike,<i>Microcavity Semiconductor Lasers: Principles, Design, and Applications</i> delivers an application-oriented and highly relevant exploration of the theory, fabrication, and applications of these practical devices.<p>The book focuses on unidirectional emission microcavity lasers for photonic integrated circuits, including polygonal microresonators, microdisk, and microring lasers. After an introductory overview of optical microcavities for microlasers and detailed information of the lasers themselves, including mode structure control and characteristics, and lasing properties, the distinguished authors discuss fabrication and applications of different microcavity lasers. Prospects for future research and potential new applications round out the book.<p>Readers will also benefit from the inclusion of:<ul><li>A thorough introduction to multilayer optical waveguides, the FDTD Method, and Padé Approximation, and deformed, chaos, and unidirectional emission microdisk lasers</li><li>An exploration of mode analysis for triangle and square microresonators similar as FP Cavity</li><li>Practical discussions of mode analysis and control for deformed square microlasers</li><li>An examination of hexagonal microcavity lasers and polygonal microcavities, along with vertical radiation loss for 3D microcavities</li></ul><p>Perfect for laser specialists, semiconductor physicists, and solid-state physicists,<i>Microcavity Semiconductor Lasers: Principles, Design, and Applications</i> will also earn a place in the libraries of materials scientists and professionals working in the semiconductor and optical industries seeking a one-stop reference for integrable microcavity semiconductor lasers.


Yong-zhen Huang, PhD, is Director of the State Key Lab on Integrated Optoelectronics at the Institute of Semiconductors at the Chinese Academy of Sciences. He received his doctorate from Peking University in China. His research focuses on microcavity lasers.Yue-de Yang, PhD, is Associate Professor at the Institute of Semiconductors, Chinese Academy of Sciences in China. He received his doctorate in Physical Electronics from the Institute of Semiconductors. His research is focused on the design and fabrication of microcavity devices.


Preface xi1 Introduction11.1 Whispering-Gallery-Mode Microcavities 11.2 Applications of Whispering-Gallery-Mode Microcavities 21.3 Ultra-HighQWhispering-Gallery-Mode Microcavities 51.4 ModeQFactors for Semiconductor Microlasers 61.4.1 Output Efficiency and ModeQFactor 61.4.2 Measurement of ModeQFactor 71.5 Book Overview 10References 112 Multilayer Dielectric Slab Waveguides132.1 Introduction 132.2 TE and TM Modes in SlabWaveguides 142.3 Modes in Symmetric Three-Layer SlabWaveguides 152.3.1 TE Modes in Three-Layer SlabWaveguides 152.3.2 TM Modes in Three-Layer SlabWaveguides 172.3.3 Guided and Radiation Modes 172.4 Eigenvalue Equations for Multilayer Slab ComplexWaveguides 182.4.1 Eigenvalue Equation for TE Modes 192.4.2 Eigenvalue Equation for TM Modes 212.4.3 Phase Shift of Total Internal Reflection 212.5 Eigenvalue Equations for One-Dimensional MultilayerWaveguides 222.5.1 Eigenvalue Equation for Vertical-Cavity Surface-Emitting Lasers 222.5.2 Resonance Condition for the FabryPerot Cavity 242.5.3 Mode Selection for Distributed Feedback Lasers 262.6 Mode Gain and Optical Confinement Factor 282.6.1 Optical Confinement Factor Based on Power Flow 282.6.2 Mode Gain for TE Modes 292.6.3 Mode Gain for TM Modes 302.7 Numerical Results of Optical Confinement Factors 312.7.1 Edge-Emitting Semiconductor Lasers 312.7.2 Si-on-SiO2 SlabWaveguide 322.7.3 Vertical-Cavity Surface-Emitting Lasers 332.8 Effective Index Method 35References 363 FDTD Method and Padé Approximation373.1 Introduction 373.2 Basic Principle of FDTD Method 383.2.1 Maxwells Equation 383.2.2 2D FDTD Method in Cartesian Coordinate System 383.2.3 3D FDTD Method in Cartesian Coordinate System 413.2.4 3D FDTD Method in Cylindrical Coordinate System 433.2.5 Numerical Stability Condition 453.2.6 Absorption Boundary Condition 463.2.7 FDTD Simulation of Microcavities 483.3 Padé Approximation for Time-Domain Signal Processing 503.3.1 Padé Approximation with Bakers Algorithm 503.3.2 Calculation of Intensity Spectra for Oscillators 523.4 Examples of FDTD Technique and Padé Approximation 533.4.1 Simulation for Coupled Microdisks 533.4.2 Simulation for Microring Channel Drop Filters 543.4.3 Light Delay Simulation for Coupled Microring Resonators 573.4.4 Calculation of Propagation Loss in Photonic CrystalWaveguides 593.5 Summary 62References 624 Deformed and Chaotic Microcavity Lasers654.1 Introduction 654.2 Nondeformed Circular Microdisk Lasers 654.2.1 Whispering-Gallery Modes in Circular Microdisks 654.2.2 Circular Microdisk Semiconductor Lasers 704.3 Deformed Microcavity Lasers with Discontinuous Boundary 704.3.1 Microdisk Lasers with a Local Boundary Defect 704.3.2 Spiral-Shaped Microcavity Lasers 724.3.3 Waveguide-Connected Spiral Microcavity Lasers 754.4 Chaotic Microcavity Lasers with Smoothly Deformed Boundary 754.4.1 Quadrupolar-Shaped Microcavity Lasers with Directional Emission 764.4.2 Limaçon Microcavity Lasers with Unidirectional Emission 794.4.3 Wavelength-Scale Microcavity Lasers with Unidirectional Emission 824.4.4 Waveguide-Coupled Chaotic Microcavity Lasers 864.5 Summary 87References 885 Unidirectional Emission Microdisk Lasers915.1 Introduction 915.2 Mode Coupling inWaveguide-Connected Microdisks 925.2.1 Whispering-Gallery Modes in Circular Microdisks 925.2.2 Mode Coupling inWaveguide-Connected Microdisks 945.3 Waveguide-Connected Unidirectional Emission Microdisk Lasers 1005.3.1 Lasing Characteristics of Unidirectional Emission Microdisk Lasers 1005.3.2 Direct Modulation Characteristics of Unidirectional Emission Microdisk Lasers 1035.4 Unidirectional Emission Microring Lasers 1075.5 Unidirectional Emission Hybrid Deformed-Microring Lasers 1115.6 Wide-Angle Emission and Multiport Microdisk Lasers 1135.6.1 Wide-Angle Emission-Deformed Microdisk Lasers 1135.6.2 Multiport Output Microdisk Lasers 1175.7 Summary 119References 1196 Equilateral-Triangle-Resonator Microlasers1236.1 Introduction 1236.2 Mode Analysis Based on the ETR Symmetry 1236.2.1 Wave Equations for TE and TM Modes 1236.2.2 Transverse Modes by Unfolding Light Ray in the ETR 1246.2.3 Evanescent Fields in External Regions 1256.2.4 Eigenvalue Equation 1276.3 Mode-Field Distributions 1286.3.1 Mode Degeneracy and Classify 1286.3.2 Comparisons of Analytical Solutions with Simulated Results 1296.3.3 Size Limit for ETR 1296.4 Far-Field Emission andWaveguide-Output Coupling 1316.4.1 ModeQ-Factor Calculated by Far-Field Emission 1316.4.2 Output Coupling by Connecting aWaveguide 1336.5 Mode Analysis Using Reflected Phase Shift of PlaneWave 1356.5.1 Mode Analysis Using Mode Light Ray Approximation 1356.5.2 Comparison of ModeQFactors 1386.5.3 Effect of Metal Layer on Mode Confinement 1396.6 Mode Characteristics of ETR Microlasers 1406.6.1 Device Fabrication 1406.6.2 Lasing Characteristics 1426.7 Summary 145References 1457 Square Microcavity Lasers1477.1 Introduction 1477.2 Analytical Solution of Confined Modes 1487.3 Symmetry Analysis and Mode Coupling 1507.4 Mode Analysis for HighQModes 1547.5 Waveguide-Coupled Square Microcavities 1577.6 Directional-Emission Square Semiconductor Lasers 1637.7 Dual-Mode Lasing Square Lasers with a Tunable Interval 1657.8 Application of Dual-Mode Square Microlasers 1687.9 Lasing Spectra Controlled by Output Waveguides 1717.10 Circular-Side Square Microcavity Lasers 1747.11 Summary 180References 1818 Hexagonal Microcavity Lasers and Polygonal Microcavities1858.1 Introduction 1858.2 Mode Characteristics of Regular Polygonal Microcavities 1868.2.1 Symmetry Analyses Based on Group Theory 1868.2.2 Numerical Simulations ofWGMs in Regular Polygonal Microcavities 1908.2.3 Circular-Side Polygonal Microcavities 1938.3 WGMS in Hexagonal Microcavities 1978.3.1 Periodic Orbits in Hexagonal Microcavities 1978.3.2 Symmetry Analyses and Mode Coupling 2008.3.3 Numerical Simulation ofWGMs in Hexagonal Microcavities 2018.3.4 WGMs inWavelength-Scale Hexagonal Microcavities 2038.4 Unidirectional Emission Hexagonal Microcavity Lasers 2058.4.1 Waveguide-Coupled Hexagonal Microcavity Lasers 2068.4.2 Circular-Side Hexagonal Microcavity Lasers 2098.5 Octagonal Resonator Microlasers 2118.6 Summary 214References 2159 Vertical Loss for 3D Microcavities2199.1 Introduction 2199.2 Numerical Method for the Simulation of 3D Microcavities 2209.2.1 Effective Index Method 2209.2.2 S-Matrix Method 2229.3 Control of Vertical Radiation Loss for Circular Microcavities 2259.3.1 Mode Coupling and Vertical Radiation Loss 2259.3.2 Semiconductor Microcylinder Lasers with the Sizes Limited by Vertical Radiation Loss 2309.3.3 Cancelation of Vertical Radiation Loss by Destructive Interference 2369.4 Verical Radiation Loss for Polygonal Microcavities 2459.4.1 3D Equilateral-Triangular Microcavity withWeak Vertical Waveguiding 2459.4.2 3D Square Microcavity withWeak VerticalWaveguiding 2469.5 Summary 247References 24910 Nonlinear Dynamics for Microcavity Lasers25110.1 Introduction 25110.2 Rate Equation Model with Optical Injection 25310.3 Dynamical States of Rate Equations with Optical Injection 25510.4 Small Signal Analysis of Rate Equations 26110.5 Experiments of Optical Injection Microdisk Lasers 26310.5.1 Nonlinear Dynamics Under Optical Injection 26310.5.2 Comparison Between Experiment and Simulated Results 26810.5.3 Modulation Bandwidth Enhancement Under Optical Injection 26910.6 Microwave Generation in Microlaser with Optical Injection 27110.7 Integrated Twin-Microlaser with Mutually Optical Injection 27510.8 Discussion and Conclusion 276References 27811 Hybrid-Cavity Lasers28311.1 Introduction 28311.2 Reflectivity of aWGM Resonator 28411.3 ModeQ-Factor Enhancement for Hybrid Modes 28611.4 Hybrid Mode-Field Distributions 28811.5 Fabrication of Hybrid Lasers 29011.6Q-Factor Enhancement and Lasing Characteristics 29211.7 Robust Single-Mode Operation 29511.8 Optical Bistability for HSRLS 29711.9 All-Optical Switching 30211.10 All-Optical Logic Gates 30611.11 Hybrid Square/Rhombus-Rectangular Lasers (HSRRLS) 30911.12 Summary 312References 314Index 317

Informationen zu E-Books

Alle hier erworbenen E-Books können Sie in Ihrem Kundenkonto in die kostenlose PocketBook Cloud laden. Dadurch haben Sie den Vorteil, dass Sie von Ihrem PocketBook E-Reader, Ihrem Smartphone, Tablet und PC jederzeit auf Ihre gekauften und bereits vorhandenen E-Books Zugriff haben.

Um die PocketBook Cloud zu aktivieren, loggen Sie sich bitte in Ihrem Kundenkonto ein und gehen dort in den Bereich „E-Books“. Setzen Sie hier einen Haken bei „Neue E-Book-Käufe automatisch zu meiner Cloud hinzufügen.“. Dadurch wird ein PocketBook Cloud Konto für Sie angelegt. Die Zugangsdaten sind dabei dieselben wie in diesem Webshop.

Weitere Informationen zur PocketBook Cloud finden Sie unter www.meinpocketbook.de.

Allgemeine E-Book-Informationen

E-Books in diesem Webshop können in den Dateiformaten EPUB und PDF vorliegen und können ggf. mit einem Kopierschutz versehen sein. Sie finden die entsprechenden Informationen in der Detailansicht des jeweiligen Titels.

E-Books ohne Kopierschutz oder mit einem digitalen Wasserzeichen können Sie problemlos auf Ihr Gerät übertragen. Sie müssen lediglich die Kompatibilität mit Ihrem Gerät prüfen.

Um E-Books, die mit Adobe DRM geschützt sind, auf Ihr Lesegerät zu übertragen, benötigen Sie zusätzlich eine Adobe ID und die kostenlose Software Adobe® Digital Editions, wo Sie Ihre Adobe ID hinterlegen müssen. Beim Herunterladen eines mit Adobe DRM geschützten E-Books erhalten Sie zunächst eine .acsm-Datei, die Sie in Adobe® Digital Editions öffnen müssen. Durch diesen Prozess wird das E-Book mit Ihrer Adobe-ID verknüpft und in Adobe® Digital Editions geöffnet.

Weitere Artikel vom Autor "Huang, Yong-zhen/Yang, Yue-de"

Alle Artikel anzeigen